Maximizing Access in Transit Network Design
Recently published:
Rayaprolu, H., Wu, H., Lahoorpoor, B., and Levinson, D. (2022) Maximizing Access in Transit Network Design. Journal of Public Transportation. 24 [doi]
This study adopts an Access-Oriented Design (AOD) framework for optimizing transit network design. We present and demonstrate a method to evaluate the best combination of local and express alternative transit system designs through the novel concept of ‘iso-access lines’. Two bus network system designs were explored for a greenfield development in suburban Sydney: through-routed transit lines (T-ways) with higher speeds and more direct service, but longer access and egress times, and local routes that provide additional spatial coverage. We developed scenarios with T-ways only, local routes only, and both, and computed transit access to jobs as a cumulative-opportunities measure for each scenario. Local routes offer greater overall access, while T-ways provide greater access-per-unit-cost. The optimal combination of the two was established by generating ‘iso-access’ lines and determining access-maximizing combinations for a given cost by applying production-theory principles. For 15-min access, the optimal combinations had T-way service frequency equivalent to 0.48 times that of local routes. This ratio increased to 1.45, 2.05 and 2.63 for 30-min, 45- min and 60-min access respectively. In practice, the method can be applied to determine optimal transit combinations for any given budget and desired access level.